Background

- Hereditary xerocytosis (HX) is a rare form of hemolytic anemia that is caused by a heterozygous missense mutation in the gene PIEZO1 or the gene KCNN4. KCNN4 encodes a Ca\(^{2+}\)-activated K\(^+\) channel known as the Gardos channel.\(^1\)
- The compound senicapoc is a Gardos-channel blocker and is being studied as a potential treatment for HX.
- To date, all Gardos channel mutants have been associated with gain-of-function phenotypes: higher current magnitude and higher red blood cell dehydration than wild-type cells.\(^1\) During further characterization of the V282M mutation, investigators found some loss-of-function phenotypes that could affect the use of senicapoc.
- Objective: In this study, the investigators further examined the characteristics of red blood cells from patients with HX who were heterozygous for KCNN4 V282M (V282M/+).

Methods

- Blood specimens were obtained from 6 related HX patients who were V282M/+.
- Specimens were analyzed for red blood cell KCNN4-mediated changes.
 - Baseline and stimulated activity were measured by influx of a rubidium isotope. Stimulated activity was provoked by a calcium ionophore (A23187) or a plasma membrane calcium ATPase inhibitor (orthovanadate).
 - Other characteristics of the red blood cells were also assessed, including number, size, hemoglobin content, deformability, sodium content, and potassium content.
- Results were compared to those of 6 specimens from apparently healthy (WT) individuals.

Results

- Baseline channel activity was higher in cells from HX V282M/+ patients than those from WT individuals. This phenotype was expected gain-of-function.
- Stimulated channel activity was lower in cells from HX V282M/+ patients than those from WT individuals. This phenotype was loss-of-function.
 - Loss-of-function was unrelated to altered intracellular Ca\(^{2+}\), Ca\(^{2+}\) sensitivity, senicapoc sensitivity, or altered Ca\(^{2+}\) handling.
- Compared to red blood cells from WT individuals, red blood cells from HX V282M/+ patients were fewer, but had a higher proportion of macrocytic (larger) cells, a higher proportion of hyperchromic (high hemoglobin, >41 g/dL) cells, lower deformability, higher intracellular sodium content, and much lower potassium content.

Conclusions

- The results of this study indicate that the V282M mutation causes both gain-of-function and loss-of-function phenotypes, including lower stimulated channel activity.
- Such results may have clinical implications for the treatment of HX patients with senicapoc.
Affiliations
1 Departments of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA
2 Department of Molecular Medicine and Medical Biotechnologies, "Federico II" University of Naples, Italy CEINGE, Biotecnologie Avanzate, Naples, Italy
3 Division of Hematology and Oncology, Boston Children's Hospital; Dana-Farber Cancer Center; Department of Pediatrics, Harvard Medical School, Boston, MA
4 Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA
5 5233 King Ave #308, Rosedale, MD
6 Department of Hematology, Hospital Israelita Albert Einstein, Sao Paulo, Brazil
7 Quest Diagnostics, San Juan Capistrano, CA
8 Department of Laboratory Medicine, Boston Children's Hospital and Department of Pathology, Harvard Medical School, Boston, MA
9 Quest Diagnostics, Marlborough, MA
10 Departments of Medicine and Laboratory Medicine, University of Massachusetts Medical Center, Worcester, MA
11 Broad Institute of Harvard and MIT, Cambridge MA