Key Summary of Published Article

Frequency of Frontotemporal Dementia Gene Variants in C9ORF72, MAPT, and GRN in Academic Versus Commercial Laboratory Cohorts

Background

- Frontotemporal lobar degeneration (FTLD) is a common cause of dementia. Understanding the distribution of variants associated with FTLD could improve diagnostic specificity and help develop therapies.
- Most data on variant distribution have been collected from academic centers, which excel at characterizing variants but may be limited by recruitment bias.
- Commercial clinical laboratories may reflect broader populations; thus, variant distributions may be different than those of academic centers.
- **Objective:** This study compared the distributions of GRN, MAPT, and C9ORF72 variants identified at an academic center laboratory to those identified at a commercial clinical laboratory.

Methods

- De-identified genetic screening data of FTLD-associated variants of GRN, MAPT, and C9ORF72 were obtained from:
 - 2,089 patients recruited at the University of California, San Francisco (UCSF) Memory and Aging Center.
 - 2,082 patients who received genetic testing results from a CLIA-certified, commercial clinical laboratory.
- Variant classification was performed using an algorithm published by Quest Diagnostics, and in accordance with guidelines from the American College of Medical Genetics and Genomics (ACMG).

Results

- A total of 78 patients from the academic center laboratory cohort and 387 patients from the commercial clinical laboratory cohort had FTLD-associated variants.
- Among the 2 cohorts, the variant distributions of GRN, MAPT, and C9ORF72 were similar in frequency order but different in magnitude.
 - **Academic center laboratory cohort:**
 - C9ORF72 hexanucleotide expansions: 63% (n=49)
 - GRN variants: 26% (n=20)
 - MAPT variants: 11% (n=9)
 - **Commercial clinical laboratory cohort:**
 - C9ORF72 expansions: 89% (n=344)
 - GRN variants: 6% (n=24)
 - MAPT variants: 5% (n=19)
- Most GRN or MAPT variants were rare. While 37 GRN or MAPT variants were identified in total, only 6 were common to both cohorts.

Conclusions

- The results of this study demonstrate the genetic heterogeneity of FTLD and highlight the importance of developing therapeutic interventions that will be amenable to a broad spectrum of underlying pathogenic causes.
- This study highlights the value of sharing data across academic and commercial laboratories, and the role of commercial laboratories in identifying extremely rare disease-associated alleles.

Article published in the journal Advances in Genomics and Genetics

Authors

Natasha ZR Steele, Alison R Bright, Suzee E Lee, Jamie C Fong, Luke W Bonham, Anna Karydas, Izabela D Karbassi, Mochtar Pribadi, Marc A Meservey, Matthew Gallen, Eliana Marisa Ramos, Khalida Liaquat, Carol Hoffman, Meagan Krasner, Whitney Dodge, Bruce L Miller, Giovanni Coppola, Katherine P Rankin, Jennifer S Yokoyama, Joseph J Higgins

Affiliations

1. Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA
2. Quest Diagnostics, Marlborough, MA
3. Department of Neurology, University of California, Los Angeles, CA
4. Department of Psychiatry, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA

Citation

Webpage

References